Step of Proof: eta_conv
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
eta
conv
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
(
x
.
f
(
x
)) =
f
latex
by ((((ExtWith [] [
A
B
])
CollapseTHEN (Reduce 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
:
A
B
(
x
)
,
f
(
a
)
,
Type
,
s
=
t
,
x
.
A
(
x
)
origin